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We report results from Monte Carlo simulations of the orientational ordering of the two-dimensional
Lebwohl-Lasher model for nematic liquid crystals confined inside a model porous medium of Vycor-like
tortuous geometry. We find that the magnitude of the order parameter and the susceptibility are strong-
ly suppressed in the presence of the porous medium. The system breaks into many nematic domains with
a random distribution of nematic directors. This feature is similar to the “nematic-glass” behavior that
is seen in experiments. We find that the relaxation of the order parameter autocorrelation function
satisfies an activated dynamical scaling, which is in agreement with recent simulations of random-field

models and some recent experiments.

PACS number(s): 64.70.Md, 05.40.+j, 64.60.Cn

I. INTRODUCTION

The usual course of bulk phase separation in binary
liquid mixtures [1] and phase transition in liquid crystals
[2] is completely altered when these systems are confined
in a porous medium of random geometry (such as a
Vycor glass or a silica gel). For example, during the
phase separation of binary fluid imbedded in Vycor
glasses [3,4] the two phases do not separate completely
even deep inside the coexistence region; instead, they
form many long-lived microdomains, rich in one phase or
the other. Two different theoretical interpretations of
these phenomena have been introduced. In one interpre-
tation, the metastability and the slow dynamics are ex-
plained in terms of the conserved dynamics of a random-
field Ising model [S], which is obtained from a coarse-
grained description of the phase separation process in the
presence of the random convolutions of the pore surface
[S]. Criticism has been expressed, however, that such a
mapping onto the random-field Ising model is not appli-
cable for low-porosity media such as Vycor glasses [6,7].
The second interpretation is to relate the metastability to
the geometric confinement of the binary mixture inside a
pore [6]. Such a single-pore model without any random-
ness has been used as a model system [6—9] to understand
various effects observed in experiments of binary liquid
mixtures in Vycor glasses [3,4].

The ordering of nematic liquid crystals in a restricted
geometry is another rich area of study. Surface effects on
the ordering of this system are reasonably well under-
stood for well-characterized confined geometries [10].
Studies have clearly shown the existence of ordered sur-
face layers above the phase transition temperature [11]
and a continuous development of nematic ordering
[12,13] instead of the weakly first-order nematic-isotropic
transition. The complexity of the situation increases con-
siderably when the confining medium has a disordered
geometric structure. More recent work [14—19] has been
directed to addressing the effect of such randomly con-
straining media (such as porous glasses like Vycor or sili-
ca gels) on both the statics and dynamics of the nematic-
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isotropic phase transition. In recent experiments the dy-
namics of the nematic ordering process in various gels
has been explored in detail by using quasielastic light
scattering measurements [14,18]. The results indicate
that the random preferential orientation of the liquid
crystals along the pore surface (whose normal changes
direction randomly) profoundly influences the dynamics
of an isotropic to nematic phase transition in such a sys-
tem, and fluctuations of the orientational order parame-
ter relax at a much slower rate than in bulk liquid crys-
tals. These experimental findings have stimulated
theoretical work [20,21], and a random-field model for
nematic liquid crystals has been proposed to qualitatively
explain the glasslike behavior seen in experiments. In ex-
perimental situations, the surface interaction between the
molecules and the porous medium leads to a preferential
orientation of the molecules with respect to the random
local normal of the porous medium. The random fields in
the theoretical model appear then after a coarse-graining
of the system on the length scale of the pore size. We
should point out that although the random-field term in
the Hamiltonian of the nematic liquid crystals looks simi-
lar to a random anisotropy term in a magnetic system
[22], for the headless symmetry of nematic liquid crystals,
this term actually represents the lowest-order random-
field term because of its linear coupling to the order pa-
rameter [20]. The strength of the random field in the
random-field model should directly depend on the an-
choring strength of the molecules to the surface of the gel
and indirectly on the porosity.

Wu et al. [14] have carried out a quasielastic light
scattering study of the isotropic-nematic phase transition
of 4-(n-octyl)-4-cyanobiphenyl (8CB) liquid crystals kept
inside sintered silica gels of porosity 30-35%. They
found that the intensity autocorrelation function obeys
an activated dynamical scaling as seen in simulations of
the random-field Ising model (RFIM) [23]. The experi-
mentally obtained functional form for the scaled auto-
correlation function, however, is quite different from that
obtained in simulations of the RFIM [23]. This is not
surprising since the order parameter of the liquid crystals
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has a different symmetry. Bellini, Clark, and Schaefer
[18] have carried out a similar study of the 8CB-aerogel
system for three different porosities (63%, 79%, and 94%
pore volume fraction). However, the slow nematic relax-
ation observed in this experiment has been fitted to a
stretched-exponential form with a temperature dependent
exponent. Recent simulations [24] of a microscopic lat-
tice model for nematic liquid crystals in the presence of
random fields suggest that the order parameter auto-
correlation function obeys a standard dynamical scaling
for weak random fields and an activated dynamical scal-
ing for strong random fields. Although these results are
consistent with recent experiments, the details of the scal-
ing functions do not agree with results of recent experi-
ments, suggesting that the random-field model for the
nematics may not be capable of quantitatively explaining
experiment results. It has been argued that this
difference arises from important local correlations in the
orientation of the liquid crystals along the pore surface
[24].

In contrast to the studies carried out with silica gels as
the confining media, experimental results of the ordering
of nematic liquid crystals in a Vycor glass show that the
random-field model is clearly inapplicable [15]. It has
been argued that in Vycor glasses and the pore structure
minimizes the pore-pore interactions. Hence interactions
in a single independent pore plus a suitable distribution of
pores to mimic the confining medium should be an ap-
propriate model. Note that this model is quite similar to
the single-pore model introduced by Liu et al. [6] for
binary liquid mixtures confined in Vycor glasses. This
single-pore model for the nematic liquid crystals seems to
explain the static measurements reasonably well. Howev-
er, no fluctuation effects have been considered in this
Landau-de Gennes type of model [15]. Moreover, the
dynamical relaxation process measured in time-resolved
optical Kerr effect measurements cannot be explained
satisfactorily by such a model [19].

It is quite clear that more theoretical work is necessary
at this stage, when experiments alone cannot clarify the
physics behind such a complex problem. As we have
mentioned before, most of the theoretical interpretation
of the slow dynamics seen in experiments has been quali-
tatively explained by the random-field model. However,
there is mounting evidence from simulations and experi-
ments that the random-field model is incapable of ex-
plaining experimental results quantitatively. Computer
simulations in a realistic model system will be extremely
important for an insight into the ordering problem of
nematic liquid crystals kept inside a porous medium. In-
stead of considering any simplified model (such as the
random-field model), simulations should address the or-
dering of liquid crystals in a model porous medium of in-
terconnected and tortuous structure resembling Vycor
glasses or silica gels. Such simulations have already been
used for studying phase separation in binary liquid mix-
tures [25,26] and phase transition in He3-He* mixtures
[27]. As a first step in understanding the effects of a
porous medium on the ordering of nematic liquid crys-
tals, we have carried out a simulation of a two-
dimensional model of nematic liquid crystals kept inside
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a Vycor-like restrictive geometry. We have studied both
the static properties as a function of temperature and the
strength of surface interaction and the dynamic relaxa-
tion process of the order parameter at low temperatures.

In Sec. II we present the model studied in this paper,
which consists of the two-dimensional (2D) Lebwohl-
Lasher (LL) model [28] in the presence of a Vycor-like
porous medium. We also describe the computational
techniques used and the quantities measured in the simu-
lations. The equivalence between the 2D LL model and
the 2D XY model is also discussed. The results are
presented in Sec. III, and the paper concludes with a dis-
cussion in Sec. IV of the results in the context of previous
theoretical work and experiments.

II. MODEL AND COMPUTATIONAL METHODS

We study a two-dimensional lattice model for liquid
crystals in the presence of a model porous medium in our
simulations. The lattice model is a two-dimensional ana-
log of the three-dimensional Lebwohl-Lasher model (LL
model) [28], the lattice version of the Maier-Saupe model
[29] for liquid crystals. In the model, planar rotors are
located at lattice sites and interact via the potential

U;=—e€cos2(¢,—¢;), (1)

where € is a positive coupling constant and ¢, ; are orien-
tational angles of the rotors i and j with respect to an ar-
bitrary fixed axis. The uniaxial property of the rotors is
accounted for in the factor of 2 in the form of the poten-
tial. Thus the angle ¢; varies in a range of 0=<¢; <.
The interaction is restricted to the nearest neighbors. In
our simulations, the planar rotors ar positioned on a
square lattice with periodic boundary conditions.

The 2D LL model described in Eq. (1) is actually iden-
tical to the 2D XY model. It can be easily understood
from the potential energy point of view. - In the XY mod-
el, spins interact with their nearest neighbors via a poten-
tial U;;= —ecos(6;—0;), where 6; is a variable in a
range of 0 =<6, <2, which is the mass as that for 2¢; in
the potential (1). As in the 2D XY model, topological de-
fects called ‘“‘vortices” are also present in the 2D LL
model. However, as we discuss later in this section, there
is a difference in the topological defect structure between
these two models. Furthermore, there is a uniaxial sym-
metry in the 2D LL model that is absent in the 2D XY
model. A similar difference in symmetry between the 3D
LL model and the 3D Heisenberg model results in the
very different nature of the phase transitions observed in
the two models [2,30,31]. But what would be the conse-
quence of the difference in symmetry in the 2D case? The
difference usually affects the way the order parameter is
defined. The spontaneous magnetization is normally used
as the order parameter for a spin system. The magnetiza-
tion goes to zero in the thermodynamic limit for the 2D
XY model, predicted by the Kosterlitz-Thouless (KT)
theory [32], although this quantity can still be used to
study the relaxation time by using Monte Carlo simula-
tions [33]. For the 2D LL model, the global order pa-
rameter Q was defined [34] to be the maximum of
TYV'=1/N3Ncos2(¢; —a'’), where '/ is the orientation
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of the direction that renders TV maximum, and the in-
dex j refers to the fact that the quantities need to be
determined for each configuration j. This order parame-
ter is an analog of that of the 3D LL model [31]. The
condition for a maximum, i.e,. dT*"/da'’’=0, results in
tan2a'=s/c, where c¢=1/N3Msin2¢; and s=1/
N3Ncos2¢;. Thus Q =c cos2a+s sin2a''=cos(2a'”)
(c2+s2)/c. Since cos2a”’=c /V'c2+52, one finally has

0=V c2+s2. )

The above expression is actually the magnitude of the
magnetization per spin for the 2D XY model. Therefore,
the uniaxial property of the 2D LL model does not result
in any special consequence. That is, there is no phase
transition in the thermodynamic sense in the 2D LL
model, in contrast to the 3D LL model, which leads to a
weak first-order phase transition.

The model porous medium used in our simulations is
constructed by using a method suggested by Chakrabarti
for modeling a Vycor-like porous medium [25]. Vycor is
made commercially by quenching a borosilicate glass into
the spinodal reign and then etching out the soft phase
with acid so that all the pores are interconnected.
Chakrabrati proposed following the same procedure is
simulating the quenching process of critical mixtures of
two components on a lattice by using a cell-dynamics
scheme [35]. An interconnected morphology of the pores
can be created by stopping the phase separation process
after some reduced time 7, and removing one of the two
phases. The porosity and the pore radius of the model
porous medium can be varied by choosing a different 7,
There is, however, a limit on the lowest porosity because
of the site percolation threshold for the lattice. A similar
construction in three dimensions has been made recently
[36] by carrying out spinodal decomposition in a long-
range Ising model. In our simulations, we started form a
256% square lattice consisting of a 50%-50% mixture of
two components. We stopped the phase separation at a
reduced time of 7,=10* and “etched out” one of the two
phases. The porosity, which is defined as the fraction of
the vacancies on the lattice, of the model porous medium
is about 61%, with an averaged pore radius of about 15
lattice spacings. It should be pointed out that the porosi-
ty in our two-dimensional model is much larger than that
in real Vycor glass (about 28%). In this respect, the mod-
el porous medium more resembles silica gels [18] than it
does the Vycor glass used by Iannacchione et al. [15].

This kind of model porous medium has originally been
created for liquid mixtures [25]. However, for liquid
crystals, the direction of the surface anchoring field on
the surface of the porous media needs to be determined.
To take into account local correlations in the direction,
due to the presence of the surface, we propose one possi-
ble way to simulate the correlations as follows. The sur-
face of the porous medium is made of the lattice sites of
the wall that have at least one nearest-neighbor vacancy.
A fictitious rotor system, o;, is set on the surface, where
o ; is a unit vector at the site i of the surface and is associ-
ated with the direction of the surface field. The rotor sys-
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tem then relaxes at zero temperature through the ficti-
tious interaction that is of the form —(T;-0,)(T;"
0;)(0;-0;), where i and j are either the nearest-neighbor
sites or the next-nearest-neighbor sites, and ’r‘ij is a unit
vector pointing from site j to site i. This method of relax-
ation aligns the fictitious fields o; parallel to the local
convoluted surface. The direction of the surface anchor-
ing field is given by the final relaxed configuration of o ;.

We fill up the vacancies of the model porous medium
with planar rotors. The Hamiltonian describing our
model system is, then, of the form

7{=-§ S cos2(¢,—¢,)—h> S cosAé;—6,), (3
(i j) (iys)

where h is the strength of the surface anchoring field,

(i,j) denote the sites i and j as nearest neighbors, s

specifies a site on the surface, and 6, refers to the orienta-

tional angle of o at site s.

Our simulations are performed by using a Monte Carlo
procedure, which is based on the traditional
Metropolis—Monte Carlo method [37] and modified in
order to take advantage of the vectorizing facilities of a
Cray 90 computer in the Pittsburgh Supercomputing
Center. The vacancies in the model porous medium are
grouped into two sublattices, which are the nearest-
neighbor sites of each other. The rotors on each sublat-
tice are updated simultaneously. The updatings involve
attempts to randomly rotate the direction of the individu-
al rotors in a range from O to .

We calculate the specific heat c¢,(7T) and the suscepti-
bility x(T) by using fluctuations of energy and the order
parameter

1
T)= HY—(FH)?), 4
e, (T) kBT2(< ) —(H)?) @)
1 2 )
x(1) NkBT((Q y—(@)*, (5)

where N is the number of rotors in the system, T is the
absolute temperature, kp is Boltzmann’s constant, and
the notation ( ) indicates thermal equilibrium. We also
calculate the order parameter autocorrelation function in
equilibrium:

c(1)=(8Q(1)8Q(t +7)) /{[8Q()]*) , (6)
where 8Q(£)=Q(t)—(Q).

To find a vortex within any region, one merely travels
around a closed loop and calculates the change in direc-
tion of the rotors along the path. If there is a single vor-
tex within the loop, then the net change in rotor direction
will be 7 (27 in the XY model) times an integer. The in-
teger is known as the vorticity or vortex strength. To cal-
culate the change in direction from one rotor to another,
one always counts the smaller of the two angles between
the two rotors and determines the sign of the change
from the anticlockwise or clockwise change in the angle.
On a square lattice, the core of a vortex consists of four
rotors at the corners of a plaquette. The vorticity is,
therefore, almost always unity for a vortex in the pla-
quette [38]. Furthermore, the vorticity of a single vortex
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can be positive or negative. The vorticity within a region
is the sum of the vortex strengths of those vortices con-
tained in the region. In the presence of the model porous
medium, we follow the same procedure to calculate the
vorticity except for the plaquettes near the wall, where at
least one corner of the plaquette is occupied by a bound-
ary site. In such a case, we do not consider this plaquette
for computing the vorticity. Since the sites on the edge
have fewer near neighbors than do the interior sites,
effectively this system is open to the outside. A singulari-
ty can enter the edge, and so the total vortex change is
not conserved in this case. We should mention here that
we focus on the thermodynamics of the system in this
work although it would be very 1nterest1ng to study the
vortex dynamics in such a system [39].

III. RESULTS

Before we discuss the effects of the model porous medi-
um on various properties of the nematic-liquid-crystal-
like molecules, let us first start with a bulk two-
dimensional system. The system is initialized with a ran-
dom orientational configuration and relaxed at a high
temperature, 7=1.6, in units of €. Then the system is
cooled down gradually and equilibrated at each inter-
mediate temperature. At each temperature, the system
starts with the final configuration of the previous temper-
atures and equilibrates for 10* Monte Carlo steps per ro-
tor (MCS). Next, various quantities are calculated and
averaged every 20 MCS for a total of 2X10° MCS.
Several square lattice systems of up to 200? rotors are
studied to compute both thermodynamic quantities and
topological defects. The number of rotors in the largest
system in our simulations is almost the same as that in
the model porous medium of 256° system with about
61% porosity.

We now summarize results for the bulk system. The
temperature dependence of the order parameter, Q(T)
shows that the order parameter is small at higher temper-
atures and tends to be unity at low temperatures. This
indicates that at low temperature the range of ordering
described by Q is still large in comparison with the sys-
tem size of 2002. We find a strong peak in the susceptibil-
ity x(T) and the KT transition temperature, Tyy=0.89
[38,40—43]. Near the KT transition in a finite system of
linear size L, the correlation length £=L, and hence the
size dependence of the peak of the susceptibility should
be given by Xax~L2 7. Our results for 7 are consistent
with previous, more accurate simulations of the 2D XY
model [42,43]. In contrast, no obvious size dependence is
found for either internal energy or its fluctuations, the
specific heat c¢,. This is also in agreement with previous
simulations of the 2D XY model. There is a peak in the
specific heat at temperature around 7'=1.05. The result
is consistent with previous simulation results [38,42].
The observation that the peak temperature is far above
Tyy is certainly not due to finite size effects. It has been
explained as follows. According to the KT scenario, the
KT transition occurs when a single vortex-antivortex pair
unbinds at Tyy, whereas the peak in the specific heat is
associated with the unbinding of a large number of pairs,
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which should occur at T > Tyy [38,42] since the defects
carry most of the energy fluctuations.

We have computed the vortex-pair density v as a func-
tion of temperature. The data obtained from systems of
sizes 30% and 60% with periodic boundary conditions do
not show any appreciable finite size effects. The numbers
of positive and negative vortices are exactly the same at
all temperatures and instances, as expected. At low tem-
peratures, according to the KT theory, v ~e ~24/T where
2u is the energy necessary to crate a vortex pair. This is
the so-called dilute gas approximation, where one as-
sumes that vortices are created by thermal fluctuations
and that there is no interaction between vortices because
the separation between vortex pairs is much larger than
that between a vortex-antivortex pair. When we plot the
logarithm of vortex-pair density Inv vs the inverse of tem-
perature T~ ! our data do show the above relation in the
low-temperature region. A linear behavior suggests that
the dilute-gas approximation is valid at low temperatures.
However, the energy, as given by the slope of the above
semilog plot, is 7.31+0.07, which is inconsistent with the
KT prediction of 10.2 [32]. We point out that this result
is consistent with more accurate simulations of the 2D
XY model [42], where 2u~7.55 was found for T < Tyy.
We also observe that the Inv vs T~ ! curve levels off near
the temperature at which the specific heat is maximum
(T~ '~=0.95) as it becomes easier to generate more vor-
tices when many vortices are already present to disorder
the rotors, as pointed out in previous simulations [38,42].

We now present the results for the two-dimensional
liquid crystals confined in the model porous medium.
Figure 1 shows the model porous medium used in the
simulations. Although this has a Vycor-like structure, the
porosity is much higher than commercial Vycor glasses.

FIG. 1.

The model porous medium used in the simulations.
The white region corresponds to the “pores” and the black re-
gion corresponds to the ‘“glass.”
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The average pore diameter of this structure is about 30
lattice spacings. Moreover, the ratio of the average pore
diameter d to the average pore length / is quite low in
comparison with real Vycor glasses. In our model porous

h=1¢7T-=

0.6 €

h=2¢”T=05c¢€

FIG. 2. (a) The snapshot at T =0.6€ for h*=1.0¢; (b) the
snapshot at T =0.5¢ for h12=4.0¢. The orientations of the ro-
tors and the directions of the surface field are indicated by thin
and thick sticks, respectively.
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medium, d /I <2, which is obviously lower than d /I =4
in a real Vycor glass used in the experiments [15]. As we
have mentioned earlier, the model porous medium resem-
ble silica gels more than it resembles the real Vycor
glasses.

In Figs. 2(a) and 2(b) we show two snapshots at low
temperatures for #2=1.0¢ and #?=4.0e. The snapshots
consist of a 100X 100 section of the total system. One
can observe ‘“domains” with various nematic directions
in the system. In the vicinity of the boundary, the direc-
tions are determined by the surface field. However, in
the middle of the pore, the directions are distributed ran-
domly because of the weak influence of the surface field.
As we will discuss shortly, these randomly oriented
nematic domains control the statics and the dynamics of
the system at low temperatures. )

Figure 3(a) shows the temperature dependence of Q for
various strengths of surface anchoring fields. The order
parameter for a bulk system (of size 200%, which has ap-
proximately the same number of sites as a 2567 system
with 61% porosity) is also shown in the picture for com-
parison. It can be seen that the order of the system is
dramatically suppressed at low temperatures in the pres-
ence of the porous medium, which is consistent with ex-
perimental results [15] and previous simulations [21].
The suppression is only weakly dependent on the strength
of the surface anchoring and is saturated for strong sur-
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[ ———-h’=1.0e
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FIG. 3. (a) The order parameter Q as a function of tempera-
ture T for various fields; (b) the corresponding susceptibility y
as a function of T.
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face anchoring. It indicates that the effects of the pores
on the orientational order of the liquid crystals are dom-
inated by the tortuous and confined geometry nature of
the model porous medium. Essentially the whose system
gets broken into many nematic domains with random
nematic directions. A strong anchoring field enables the
suppression of the total order parameter to be more
efficient at low temperatures. The anchoring field, how-
ever, plays an opposite role at high temperatures. It
maintains certain local orientational order near the pore
surfaces, as indicated by the slight increase of the order
parameter at high temperatures in the case of #2=4.0e.

The susceptibility as a function of 7, corresponding to
the previous cases mentioned in Fig. 3(a), is shown in Fig.
3(b). In the presence of the porous medium, the strong
peak in y observed at the phase transition temperature in
the bulk system disappears and is replaced by very flat
(no temperature dependence) curves at low temperatures.
The increase in ) at low temperatures in contrast to the
bulk case indicates that the fluctuations in the order pa-
rameter also increase in the presence of the porous medi-
um at low temperatures. The fluctuations are somewhat
smaller though for a stronger anchoring field, as shown in
Fig. 3(b).

Because of the large average pore size and the short
range of the surface anchoring field in our model porous
medium, the energetics of the system is not affected
strongly. There surface anchoring field down shifts the
internal energy of the system but has little effect on the
qualitative features of the temperature dependence of the
internal energy. This is seen clearly in Fig. 4 from the
temperature dependence of the specific heat ¢,(T) in the
presence of the porous medium. There is no big change
in ¢,(T) due to the presence of the porous medium. This
is probably because the peak in ¢, is not related to a
phase transition in the simple model. However the dou-
ble role that the surface field plays, as already discussed
regarding Fig. 3(a), shows up as a slight difference in the
specific heat, both above and below the peak tempera-
ture, for various strengths of the surface fields. A strong
field increases the value of the specific heat above the
peak temperature but decreases its value at low tempera-
tures.

15 T

14 - A -m----hl:O.Sa -
[ ———-h’=1.0¢

12 - |5~ - - hP=4.0e .
® — bulk

1.1 —

04 0.6 038 1.0 12 14 16

T/e

FIG. 4. The specific heat ¢, as a function of T in the presence
of the porous medium.
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The peak in the specific heat is associated with unbind-
ing a large number of vortices. Therefore, the observation
we made in Fig. 4 may be connected to the fact that few
extra vortices are created in the presence of the porous
medium. To check this conjecture, we plot in Fig. 5(a) a
comparison of the vortex-pair density v, both above and
below the KT transition temperature Tyy, in the pres-
ence and in the absence of the porous medium. It seems
that the density of the vortices is not very sensitive to the
presence of the porous medium [44]. However, the quali-
tative picture concerning the vortices is changed. The
number of vortices and antivortices is not always the
same anymore, in contrast to a bulk system, because of
the presence of the pore boundary. A vortex or an an-
tivortex can easily disappear at the boundary and leave
the other one of the pair alone in the pore without any
serious consequence, as shown in Fig. 5(b). However, one
can observe a small effect of the surface field on the vor-
tex density in Fig. 5(a). The vortex density correspond-
ing to the presence of a surface field is slightly lower than
in a bulk system. Also, when we compare our results for
h?=1 and h?=4, we find the number of vortices to be
smaller for the stronger surface field. It may be related to

0.07 T T T T T O
O
0.06 1= @ in pore o B
005 I O in bulk o B
@]
0.04 _
> o

.03 —
0.0: o
0.02 @) —
0.01 - ® ( a ) -
0.00 PO n® © ! L L

0.4 0.6 08 1.0 1.2 1.4 1.6

T/e

FIG. 5. (a) The comparison of the vortex-pair density v in the
presence and the absence of the porous medium; (b) a section of
the system at #2=1.0€ and T =1.0¢ in which the vortex and the
antivortex are shown by O and A, respectively.
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the fact that the rotors near the surface align smoothly
along the surface, under the influence of the anchoring
field, so that the possibility of having a vortex (antivortex)
near the surface is reduced. To see if the picture is
correct, we also calculated the vortex density at the same
temperature for h2= 1€ but with a random orientation of
the new surface fields. In this case, the vortex density is
found to be higher than in the previous calculations.

We now present our data for the order parameter re-
laxation. We compare our results for the order parame-
ter autocorrelation function in the porous medium with
two types of relaxation processes. One is known as the
stretched exponential (SE) [18],

c(t)=exp[—(t/7)*], O0<a=1, (7)

where 7 is a relaxation time. The experimental data for
many relaxation phenomena in complex random systems
seem to obey the SE behavior [16]. The other functional
form is suggested by theoretical and simulational studies
of model systems in a random field [23,24],

c(t)=exp[ —(Inz /InT)*] . (8)
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FIG. 6. (a) scaling plot of the order parameter autocorrela-
tion function ¢ (x), demonstrating that the autocorrelation func-
tion at different temperatures with surface fields of #2=1.0 and
4.0¢ satisfies approximately activated dynamical scaling with
x =In[t/74)/In[7/7], where 7,=20 MCS. The best fit to the
data yields c (x)=~exp( —x3); (b) the corresponding plot of Int vs
1/T.
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We have computed the autocorrelation function for vari-
ous T and h. The two types of relaxation functions [Egs.
(7) and (8), respectively] can be fitted to our data almost
equally well for each individual T and A with different a
and 7. The values of 7 obtained by fitting our data to the
different forms are always very close. However, the
values of a obtained by using the form (7) vary over a
range of 0.5-0.8 for different T and A (nonzero field) and
do not show universal scaling behavior.

In contrast, the a obtained by using Eq. (8) varies
around 3 for all the cases in the range of a=3=£0.5.
Therefore, our data seem to scale approximately as
c(t)~exp(—x3), where x =Int/In7, as shown in Fig.
6(a) for the case of h2=1.0e. Since for all temperatures
and fields the activated scaling works better, we believe
that it is better representation of our data. The corre-
sponding temperature dependence of 7 is shown in Fig.
6(b) by plotting Int vs 1/T for h?=1.0 and 4.0. It is
clearly shown that 7 does not diverge at low tempera-
tures. This strongly indicates that the ‘‘glasslike”
behavior seen in the simulations does not correspond to a
true thermodynamic low-temperature phase.

IV. DISCUSSION

We have carried out a numerical study of a two-
dimensional version of the Lebwohl-Lasher model of
nematic liquid crystals in the presence of a model porous
medium of Vycor-like tortuous geometry. Although it is
difficult to relate our results to experimental observations
directly, these simulations results are useful for an insight
into a complex problem. We find that the magnitude of
the order parameter and the susceptibility are strongly
suppressed. The system breaks up into many nematic
domains with a random distribution of nematic directors.
This feature is similar to the ‘“nematic-glass” behavior
seen in experiments. We find that the relaxation of the
order parameter autocorrelation function satisfies an ac-
tivated dynamical scaling in agreement with simulations
of a random-field model and some recent experiments
[4,45]. However, replacement of the model system in
terms of a random-field model has its limitations because
of the correlations among the surface fields.

Let us now discuss the limitations of our study. We
have associated the 2D LL model to the nematic liquid
crystals because of the similarity in orientation and
uniaxiality between the rotors in the model and the liquid
crystal molecules. In contrast to the 3D LL model, the
uniaxiality of the rotors in two dimensions does not lead
to a first-order phase transition, corresponding to the
nematic-isotropic phase transition observed in nematic
liquid crystals. The 2D LL model is identical to the 2D
XY model in which there is no phase transition in the
thermodynamic sense. Instead, there is a Kosterlitz-
Thouless type of phase transition. The correlation length
of ordering in finite bulk systems, up to 200? rotors, is
still large enough at low temperatures in comparison with
system size to show thermal-phase-transition-like
behaviors around Tyy. Thus, our results concerning the
order parameter and its fluctuations; i.e., the susceptibili-
ty, should be valuable for understanding the behavior of
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liquid crystals in porous media. However, the specific
heat in the model appears at a temperature far above
Tyy, so it is not associated with the nematiclike ordering.
Our results for the specific heat are not very relevant for
the liquid crystal systems but may be useful for under-
standing the behavior of XY-model-like systems, such as
superfluids, confined in porous media.

Another limitation of our model, due to the low dimen-
sionality, is the following. Although the model porous
medium created in this paper looks like a Vycor glass, the
ratio of the average pore diameter d to the average pore
length [ is quite low in comparison with real Vycor
glasses. In our model porous medium, d /I <2, which is
lower than d /I =4 in a real Vycor glass used in the ex-
periments [15]. Thus a detailed comparison with these
experiments is not possible in this paper. The order pa-
rameter autocorrelation function computed in the simula-
tions shares some common features with recent experi-
ments carried out in silica gels and with simulations of
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random-field models. However, the combination of the
high porosity, the low dimensionality, and the short-
range surface anchoring field may lead to the strong devi-
ation of the order parameter autocorrelation function
from the experimental results [14] and the previous simu-
lations in three dimensions [24].
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